
GNU Bayonne: telephony services for freely licensed operating systems

David Sugar<sugar@gnu.org>
http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a middle-ware telephony server that can be used to create and de-
ploy script driven telephony application services. These services interact with users
over the public telephone network. What we are hoping to do is enable, using com-
modity PC hardware and CTI cards running under GNU/Linux and FreeBSD, which
often are available from numerous vendors, to create carrier applications like Voice
Mail and calling card systems, as well as enterprise applications such as unified
messaging. GNU Bayonne can be used to provide voice response for e-commerce
systems and has been used in this role in various e-gov projects. GNU Bayonne
can also be used to telephony enable existing scripting languages such as perl and
python.

1 Introduction

Even without considering all the various reasons of why we
must have Free Software as part of the telecommunications
infrastructure, it is important to consider what the goals and
platform needs are for a telephony platform. Historically,
telephony services platforms had been the domain of real-time
operating systems. Recent advances in CTI hardware has
made it possible to offload much of this requirement to hard-
ware making it practical for even low performance systems
running efficient kernels to provide such services for many
concurrent users.

Telephony services are usually housed in phone closets or
other closed and isolated areas. As such, remote main-
tainability, and high reliability are both important platform
requirements as well. The ability to integrate with and
use standard networking protocols is also becoming very
important in traditional telephony, and certainly is a key
requirement for next generation platforms.

So we can summarize; low latency/high performance kernels,
remote manageability without the need for a desktop environ-
ment, high reliability, and open networking protocols. This
sounds like an ideal match for BSD or Linux kernel based
systems.

However, when we looked further into this question and
architected GNU Bayonne, we also decided threading was im-
portant. Threading offers some interesting design advantages,
but, equally important, it provides a means of better utilizing
SMP hardware. We found it important to scale up to solutions
that can support voice processing on a full DS-3 circuit using
a single server. Threading represents some challenges in
current BSD systems as I will elaborate further in this paper,
so we initially chose to focus primarly on GNU/Linux systems
rather than BSD.

Our goal for GNU Bayonne 1.0 was primarily to make
telephony services as easy to program and deploy as a
web server is today. We choose to make this server easily
programmable through server scripting. We also desired to
have it highly portable, and allow it to integrate with existing
application scripting tools so that one could leverage not just
the core server but the entire platform to deliver telephony
functionality and integrate with other resources like databases.

GNU Bayonne, as a telephony server, also imposes some very
real and unique design constraints. For example, we must
provide interactive voice response in real-time. “real-time”
in this case may mean what a person might tolerate, or delay
of 1/10th of a second, rather than what one might measure
in milliseconds in other kinds of real-time applications.
However, this still means that the service cannot block, for,
after all, you cannot flow control people speaking.



Since each vendor of telephony hardware has chosen to create
their own unique and substantial application library interface,
we needed GNU Bayonne to sit above these and be able
to abstract them. Ultimately we choose to create a driver
plug-in architecture to do this. What this means is that you
can get a card and API from Aculab, for example, write your
application in GNU Bayonne using it, and later choose, say, to
use Intel telephony hardware, and still have your application
run, unmodified. This has never been done in the industry
widely because many of these same telephony hardware man-
ufacturers like to produce their own middle-ware solutions
that lock users into their products.

2 Supporting Libraries

To create GNU Bayonne we needed a portable foundation
written in C++. I wanted to use C++ for several reasons. First,
the highly abstract nature of the driver interfaces seemed
very natural to use class encapsulation for. Second, I found
I personally could write C++ code faster and more bug free
than I could write C code.

Why we choose not to use an existing framework is also
simple to explain. We knew we needed threading, and
socket support, and a few other things. There were no single
framework that did all these things except a few that were
very large and complex which did far more than we needed.
We wanted a small footprint for GNU Bayonne, and the most
adaptable framework that we found at the time typically added
several megabyte of core image just for the runtime library.

GNU Common C++ (originally APE) was created to provide
a very easy to comprehend and portable class abstraction for
threads, sockets, semaphores, exceptions, etc. This has since
grown into it’s own and is now used as a foundation of a
number of projects as well as being a part of GNU.

In addition to having portable C++ threading, we needed
a scripting engine. This scripting system had to operate in
conjunction with a non-blocking state-transition call pro-
cessing system. It also had to offer immediate call response,
and support several hundred to a thousand instances running
concurrently in one server image.

Many extension languages assume a separate execution
instance (thread or process) for each interpreter instance.

These were unsuitable. Many extension languages assume
expression parsing with non-deterministic run time. An
expression could invoke recursive functions or entire sub-
programs for example. Again, since we wanted not to have
a separate execution instance for each interpreter instance,
and have each instance respond to the leading edge of an
event callback from the telephony driver as it steps through
a state machine, none of the existing common solutions like
tcl, perl, guile, etc, would immediately work for us. Instead,
we created a non-blocking and deterministic scripting engine,
GNU ccScript.

GNU ccScript is unique in several ways. It is step executed,
and is non-blocking. Statements either execute and return
immediately, or they schedule their completion for a later time
with the executive. A given ”step” is executed, rather than
linearly. This allows a single thread to invoke and manage
multiple interpreter instances. While GNU Bayonne can
support interacting with hundreds of simultaneous telephone
callers on high density carrier scale hardware, we do not
require hundreds of native ”thread” instances running in the
server, and we have a very modest CPU load.

Another way GNU ccScript is unique is in support for
memory loaded scripts. To avoid delay or blocking while
loading scripts, all scripts are loaded and parsed into a
virtual machine structure in memory. When we wish to
change scripts, a brand new virtual machine instance is
created to contain these scripts. Calls currently in progress
continue under the old virtual machine and new callers are
offered the new virtual machine. When the last old call
terminates, the entire old virtual machine is then disposed of.
This allows for 100% uptime even while services are modified.

Finally, GNU ccScript allows direct class extension of the
script interpreter. This allows one to easily create a derived
dialect specific to a given application, or even specific to a
given GNU Bayonne driver, simply by deriving it from the
core language through standard C++ class extension.

3 TGI support and plug-ins

To be able to create useful applications, it is necessary to have
more than just a scripting language. It requires a means to be
extended so that it can incorporate database access libraries or
other functions that fall outside of the scope of the scripting
language itself. These extensions should be loaded on demand



only when used, and should be specified at runtime so that
new ones can easily be added without the need to recompile
the entire server.

To support scripting extensions we have the ability to create
direct command extensions to the native GNU Bayonne
scripting languages. These command extensions can be
processed through plug-in modules which can be loaded at
runtime, and offer both scripting language visible interface
extensions, and, within the plug-in, the logic necessary to
support the operation being represented to the scripting
system. These are much more tightly coupled to the internal
virtual machine environment and a well written plug-in could
make use of thread pools or other resources in a very efficient
manner for high port capacity applications.

When writing command extensions, it is necessary to consider
the need for non-blocking operations. GNU Bayonne uses
ccScript principally to assure non-blocking scripting, and
so any plug-in must be written so that if it must block, it
does so by scheduling a state operation such as ”sleep” and
performs potentially blocking operations in separate threads.
This makes it both hard and complex to correctly create script
extensions in this manner.

While GNU Bayonne’s server scripting can support the cre-
ation of complete telephony applications, it was not designed
to be a general purpose programming language or to integrate
with external libraries the way traditional languages do. The
requirement for non-blocking requires any module extensions
created for GNU Bayonne are written highly custom. We
wanted a more general purpose way to create script extensions
that could interact with databases or other system resources,
and we choose a model essentially similar to how a web server
does this.

The TGI model for GNU Bayonne is very similar to how
CGI works for a web server. In TGI, a separate process
is started, and it is passed information on the phone caller
through environment variables. Environment variables are
used rather than command line arguments to prevent snooping
of transactions that might include things like credit card
information and which might be visible to a simple “ps”
command.

The TGI process is tethered to GNU Bayonne through stdout
and any output the TGI application generates is used to invoke
server commands. These commands can do things like set
return values, such as the result of a database lookup, or they

Figure 1: Architecture of GNU Bayonne

can do things like invoke new sessions to perform outbound
dialing. A “pool” of available processes are maintained
for TGI gateways so that it can be treated as a restricted
resource, rather than creating a gateway for each concurrent
call session. It is assumed gateway execution time represents a
small percentage of total call time, so it is efficient to maintain
a small process pool always available for quick TGI startup
and desirable to prevent stampeding if say all the callers hit a
TGI at the exact same moment.

4 Bayonne Architecture

As can be seen, we bring all these elements together into a
GNU Bayonne server, which then executes as a single core
image. The server itself exports a series of base classes which
are then derived in plug-ins. In this way, the core server itself
acts as a “library” as well as a system image. One advantage
of this scheme is that, unlike a true library, the loaded modules
and core server do not need to be relocatable, since only one
instance is instantiated in a specific form that is not shared
over arbitrary processes.

When the server comes up, it creates gateways and loads
plug-ins. The plug-ins themselves use base classes found
in the server and derived objects that are defined for static
storage. This means when the plug-in object is mapped
through dload, it’s constructor is immediately executed, and
the object’s base class found in the server image registers the
object with the rest of GNU Bayonne. Using this method,
plug-ins in effect automatically register themselves through
the server as they are loaded, rather than through a separate



runtime operation.

The server itself also instantiates some objects at startup even
before main() runs. These are typically objects related to
plug-in registration or parsing of the configuration file.

Since GNU Bayonne has to interact with telephone users over
the public telephone network or private branch exchange,
there must be hardware used to interconnect GNU Bayonne
to the telephone network. There are many vendors that supply
this kind of hardware and often as PC add-on cards. Some
of these cards are single line telephony devices such as the
Quicknet LineJack card, and others might support multiple
T1 spans. Some of these cards have extensive on-board DSP
resources and TDM busses to allow interconnection and
switching.

GNU Bayonne tries to abstract the hardware as much as
possible and supports a very broad range of hardware already.
GNU Bayonne offers support for /dev/phone Linux kernel
telephony cards such as the Quicknet LineJack, for multiport
analog DSP cards from VoiceTronix and Dialogic, and digital
telephony cards including CAPI 2.0 (CAPI4Linux) compliant
cards, and digital span cards from Intel/Dialogic and Aculab.
We are always looking to broaden this range of card support.

At present both voice modem and OpenH323 support is
being worked on. Voice modem support will allow one to
use generic low cost voice modems as a GNU Bayonne
telephony resource. The openh323 driver will actually require
no hardware but will enable GNU Bayonne to be used as
an application server for telephone networks and softswitch
equipment built around the h323 protocol family. At the time
of this writing openh323 support is slated for release as part
of GNU Bayonne 1.1.

5 GNU Bayonne and XML Scripting

Some people have chosen to create telephony services through
web scripting, which is an admirable ambition. To do this,
several XML dialects have been created, but the idea is
essentially the same. A query is made, typically to a web
server, which then does some local processing and spits back
a well formed XML document, which can then be used as a
script to interact with the telephone user. These make use of
XML to generate application logic and control much like a

scripting language, and, perhaps, is an inappropriate use of
XML, which really is designed for document presentation
and inter- exchange rather than as a scripting tool. However,
given the popularity of creating services in this manner, we do
support them in GNU Bayonne.

GNU Bayonne did not choose to be designed with a single or
specific XML dialect in mind, and as such it uses a plug-in.
The design is implemented by dynamically transcoding
an XML document that has been fetched into the internal
ccScript virtual machine instructions, and then execute the
transcoded script as if it were a native ccScript application.
This allows us to transcode different XML dialects and run
them on GNU Bayonne, or even support multiple dialects at
once.

Since we now learn that several companies are trying to force
through XML voice browsing standards which they have
patent claims in, it seems fortunate that we neither depend on
XML scripting nor are restricted to a specific dialect at this
time. My main concern is if the W3C will standardize voice
browsing itself only to later find out that the very process
of presenting a document in XML encoded scripting to a
telephone user may turn out to have a submarine patent, rather
than just the specific attempts to patent parts of the existing
W3C voice browsing standard efforts.

Currently GNU Bayonne impliments a ”BayonneXML”
dialect as a model XML plugin. This dialect demonstrates a
range of functionality similar to ”CallXML”. We have had
offers from various sources to fund specific development of
W3C spec compliant XML dialects, but so far none of these
offers have ever reached the point where a check was cut.
It would take considerable time and talent to finish GNU
Bayonne XML work, and none of the people activily using
it have pushed for XML support. As such, it has received a
lower profile in the list of features we wish to currently work
on.

6 Current Status

The 1.0 release of GNU Bayonne was released on September
1st. This release represents several years of active develop-
ment and has been standardized in how it operates and how it
is deployed. This release is part of the GNU project and has
been packaged for use with many GNU/Linux distributions.
With this release we have had a stable platform for developing



GNU Bayonne applications and for considering future devel-
opment.

GNU Bayonne does not exist alone but is part of a larger
meta-project, “GNUCOMM”. The goals of GNUCOMM
is to provide telephony services for both current and next
generation telephone networks using freely licensed software.
These services could be defined as services that interact with
desktop users such as address books that can dial phones
and softphone applications, services for telephone switching
such as the IPSwitch GNU softswitch project and GNU
oSIP proxy registrar, services for gateways between current
and next generation telephone networks such as troll and
proxies between firewalled telephone networks such as Ogre,
realtime database transaction systems like preViking Infotel
and BayonneDB, and voice application services such as those
delivered through GNU Bayonne.

7 GNU Bayonne and FreeBSD

GNU Bayonne is successfully used with GNU/Linux systems
today. It is widely used in many areas ranging from com-
mercial carriers in Europe to state governments in the United
States. We do not believe telephony should be restricted to
any one platform, however, and, even from the beginning,
choose to make GNU Bayonne highly portable.

The core libraries that compose GNU Bayonne are all highly
portable, and in particular, are built on a single abstract
interface library, GNU Common C++. GNU Common C++
offers portable threading and socket support, and has been
ported to many platforms, including FreeBSD, as well as some
non-Unix platforms. These libraries also have active support
and are distributed with build files for directly building BSD
style ”ports” collection entities. As such it is very simple to
build a ”port” of Common C++, ccAudio, or ccScript. One
just does ”make ports” from the master Makefile after using
./configure.

I do not activily package GNU Common C++, ccAudio,
or ccScript for FreeBSD just as I do not activily provide
Debian package for the GNU/Debian distribution, or for any
other target OS. At one time I did many of these things, but
I found it became too overwhelming to both manage and
build releases, and to personally provide binary and build
packages for every target platform. We also do not have a
large enough group of active developers where one can simply

work on packaging. In fact, we now depend on the broader
GNU/Linux community and vendors for packaging of GNU
Bayonne for specific GNU/Linux distributions and for patches
when needed for specific distributions.

I actually do on occassion develop under FreeBSD. I actually
authored the original FreeBSD port builds for GNU Bay-
onne’s supporting libraries and tested them on my FreeBSD
development system at home. I also did an experimental
build of GNU Bayonne under FreeBSD and we are hoping to
demonstrate it at EuroBSD. However, we have ran into several
issues in building GNU Bayonne under FreeBSD related to
threading.

The primary issue with FreeBSD threading boils down to
two issues; one, that not all blocking system calls behave as
cancellation points, and two, that ”immediate” cancellation
is not at all supported in FreeBSD’s native libcr threading
environment. This causes a number of abhorent behaviors on
the test server I have built under FreeBSD (4.6), which at this
time almost works correctly.

There is also the port of the ”LinuxThreads” package available
for FreeBSD. I recently modified GNU Common C++ to
support this as an optional build choice under FreeBSD. The
”LinuxThreads” package, I gather, uses the FreeBSD version
of ”clone()”, and impliments posix threads the way that Linux
glibc does. The question I have, and I hope to resolve by
talking with active FreeBSD developers, is if it makes sense to
use and require ”LinuxThreads” for supporting GNU Bayonne
in the future, or if it makes more sense to work out the issues
that prevent the native threading library from working.

The final challenge we have is that there is very limited
computer telephony hardware choices available for xBSD
systems today.

8 EuroBSD conference goals

One goal we have is to generate more interest in the BSD
community in general about telephony and in particular about
GNU Bayonne. We are looking for help from the BSD com-
munity in several areas. One area is to find a person to help
coordinate distribution and updates of the FreeBSD ”ports”
collections for GNU Bayonne and dependent packages.



We also wish to discuss the various issues related to threading
and various BSD platforms. In that the current GNU Bayonne
developers have fairly limited exposure to xBSD events, there
is a lack of full understanding of these issues in xBSD and
how they relate to the upcoming 5.0 release of FreeBSD.

Ideally we would like to have contributions from the BSD
community as part of GNU Bayonne. In part, such contribu-
tions would be particularly helpful in making GNU Bayonne
better able to build and be used on the various BSD systems.
However, contributions can take many forms, not all of which
are coding.

Finally, we wish to further interest computer telephony oem’s
to support BSD platforms, There are many performance
advantages to the BSD kernel, and many reasons it would
be useful for such vendors to target development under BSD
as well as under the Linux kernel. Some vendors, such as
Voicetronix, already activily do this with freely licensed
drivers that work on FreeBSD as well as Linux kernels. Most
cti vendors neither have freely licensed drivers nor choose to
support BSD at all.

9 Future Development

While XML is not an immediate area of active development,
we are working in several important areas for the next major
release. These include designing support for building a com-
plete script driven PBX/telephone switch with GNU Bayonne.
Such a system would offer direct application integration with
a complete GNU Bayonne hosted phone system that can be
used by a small office. This work is initially possible with the
new line of Voicetronix PBX cards and their freely licensed
drivers for both GNU/Linux and FreeBSD systems.

We are also looking to expand support for additional tele-
phony hardware. In particular, we are interested in completing
support for the Zapata telephony interfaces for the 1.1 release.
These drivers are available for both GNU/Linux and FreeBSD
systems and are freely licensed. The Zapata line includes
support for digital (T1) voice resource cards as well as
analog telephony hardware. I see this as the first oppertunity
for FreeBSD systems to participate in high density digital
telephony solutions such as those we use GNU/Linux for with
GNU Bayonne today with commercial carriers.

Certainly, one of our most important goals is making GNU
Bayonne fully available for BSD systems, and I hope that will
finally be accomplished as part of the upcoming 1.1 release.

10 Acknowledgments

There are a number of contributors to GNU Bayonne. These
include Matthias Ivers who has provided a lot of good bug
fixes and new scheduler code. Matt Benjamin has provided
a new and improved TGI tokenizer and worked on Pika out-
bound dialing code. Wilane Ousmane helped with the French
phrasebook rule sets and French language audio prompts.
Henry Molina helped with the Spanish phrasebook rule sets
and Spanish language audio prompts. Kai Germanschewski
wrote the CAPI 2.0 driver for GNU Bayonne, and David Kerry
contributed the entire Aculab driver tree. Mark Lipscombe
worked extensively on the Dialogic driver tree. There have
been many additional people who have contributed to and
participated in related projects like GNU Common C++ or
who have helped in other ways.


