
Monitoring the World with NetBSD

Alan Horn Jennifer Davis
Inktomi Corp California Institute of Technology
Alan.Horn@inktomi.com Jennifer.Davis@caltech.edu

Abstract

Through presenting a set of guidelines and freeware monitoring tools, we hope to prevent your enterprise
from experiencing embarrassing and costly mistakes. Part of building any system, whether from a fresh
start, or adding to a preexisting architecture, requires this kind of planning, although the depth depends on
the complexity of your environment. This will help prevent system degradation and public embarrassment
as well as improve perceived system performance.

1. Introduction

System environments are becoming more complex as
customer needs and requirements increase. Keeping up
with competitors in this negative market requires that
money is not wasted on trivial matters. As budgets are
tightened, and hiring additional IT techs is frozen,
managing the growing spider web of systems and
networks becomes more difficult. Time is consumed
by tracking down problems, security patches, and basic
system management. With an effective monitoring
solution, administrators can free up their time for more
important tasks.

1.1 Define the problem.

In the standard environment, monitoring comes last
after purchasing adequate equipment, setting up the
system and required services, and making the system
live.

Sometimes, monitoring is never considered, as the
overworked administrator is charged with all of the
previous tasks, little resources to accomplish them, and
the demand that it all be finished yesterday. Monitoring
becomes important when the company financial
controller (Mr. Smiley) realizes how much money the
company has lost because of unforeseen outages in the
last year. This is when the IT department is charged
with setting up a low cost monitoring solution.

1.2 What is monitoring?

What do we mean by our desire to set up a monitoring
solution? If we reference http://www.webster.com

v. mon·i·tored, mon·i·tor·ing, mon·i·tors [Latin,
from monre, to warn]
 v. tr.
 1. To check the quality or content of (an
electronic audio or visual signal) by means of a
receiver.
 2. To check by means of an electronic receiver for
significant content, such as military, political, or
illegal activity: monitor a suspected criminal's
phone conversations.
 3. To keep track of systematically with a view to
collecting information: monitor the bear population
of a national park; monitored the political views of
the people.
 4. To test or sample, especially on a regular or
ongoing basis: monitored the city's drinking water
for impurities.
 5. To keep close watch over; supervise: monitor
an examination.
 6. To direct.

From this definition, we can define a
comprehensive solution to our problem.
Monitoring comprises regularly sampling some
sort of content, systematically tracking the state of
that content, and warning the appropriate parties
when necessary.

1.3 What should we be monitoring?

Determining what should be monitored is a
decision that should be made by analyzing
individual environments. For critical out facing
machines, monitoring the world may be the only
solution. For stand-alone work machines, the
system may not need to be monitored at all. The
difference depends on what people consider
important, why they consider it important, and who
those people are.

The main types of monitoring are uptime or
availability, performance, and security. The goals of
monitoring are to make the job easier, more
manageable, and efficient, and to fix problems before
they are seen. If you work for a profit making
company, ultimately you assist in ‘increasing
shareholder value’.

Monitoring is more than the world of bits and bytes. It
can also involve the physical environment in which
your systems live.

Monitoring should not replace redundancy of systems
and services. Redundancy prevents complete outages
allowing continued service, with possible degradation
during a failure situation. Monitoring complements
redundancy by alerting the IT department to fix the
degraded state of services. For example, a RAID 5 disk
array can suffer the loss of one disk, and still function.
If the monitoring system alerts the system administrator
immediately that a failure has occurred, then the disk
can be replaced quickly without any loss of service or
data on the array.

2.0 Selecting your tools.

The tools you select for monitoring should be
dependable, stable, and consistent to the purpose to
which you put them. As the rest of the company adopts
the monitoring solution, the tools need to have a
sufficiently rich set of features that provide flexibility to
this expansion. The tools should be of a clean design,
and readily understandable with a modicum of effort
from others once your strategy has been implemented.
For some, the tools must be quickly implemented as
previous outages have made setting up a monitoring
solution now a crisis.

2.1 One OS to rule them all

Although NetBSD is the authors’ preferred OS, the
techniques and applications discussed will work on
other operating systems. The important factors for
determination of OS are knowledge of OS, comfort
levels at the basic levels of administration, integration
into the existing environment, and standing political
issues within your company.

There are several reasons to choose NetBSD over other
operating systems. NetBSD provides a stable clean
design and implementation and is well documented. It
has a great network stack. It also has a comprehensive
base Unix system with good analysis tools for simple
monitoring, and readily available packages in the

pkgsrc system. NetBSD runs on many platforms,
as well as cheap commodity hardware. The final
personal reason is personal comfort with the OS,
and brand loyalty.

2.2 Pkgsrc system – an overview

Similar to the FreeBSD ports collection, the
NetBSD pkgsrc system is a very good source of
tools that is growing daily. Pkgsrc is not installed
by default, but it is easily set up. Instructions for
obtaining it are found in the references.

To see what packages are available in pkgsrc
specifically for monitoring, check the net/,
security/, and sysutils/ subdirectories.

$ cd /usr/pkgsrc/net
$ less */DESCR

This will show you the descriptions of every
package within the net subsection.

To install a pkgsrc package (e.g. nocol) :

$ su
cd /usr/pkgsrc/net/nocol
make
make install

Package binaries are typically installed in
/usr/pkg/bin or /usr/pkg/sbin. Modify your $PATH
environment variable as appropriate to include
these new paths within your executable path.1

If you have problems when installing a package,
contact the maintainer of the package. The person
responsible for the maintenance of each individual
package, is listed in the top-level Makefile in each
pkgsrc package directory (e.g.
/usr/pkgsrc/net/nocol/Makefile).

1 Paths can be set on an individual per-user level,
or you can modify /etc/csh.cshrc and /etc/profile to
set the additional path for every user on the system.

3. Monitoring for availability

3.1 Definition

Availability is more than a system being up, and a
service running. Availability means that individuals
can get to what they need, when they need it, retrieve
what it offers, and avail themselves of the service. For
example, just because on start of Apache the “httpd
started”message pops up, and the process logs show
that http is up, and running, this does not indicate
whether a user can actually reach a the document root,
or any other page on the site. Another example, just
because the Oracle ora_* processes are up and running,
doesn’t indicate whether that database is accepting
connections and relaying the data needed.

3.2 Strategies

The best method of monitoring for availability, is to
emulate as closely as possible the normal ‘request
operation’. A ‘request operation’ (RO) is how a user of
the system, process on the system, or a process on
another system accesses a specific service.

Examples of Access Tests for different services
web server - access the root document.
(http://my.webserver.org)

name server – get the start of authority record
(SOA) for a given zone, with additional tests
confirming that the A records and PTR records for
critical hosts are served correctly.

Critical web application – suite of tests, each
element confirming a different stage or aspect of
the web application is performing correctly.

Make informed decisions about the frequency of RO
queries. By querying ROs too frequently, monitoring
can induce additional load that degrades service
performance. By not querying ROs enough, monitoring
can miss outages that occur between your ROs. A good
monitoring system will include tunable timing
parameters such as these.

Depending on the tool chosen for each RO, tests are
made on the exit status of the tool’s run or a parse of
the RO’s output.

3.3 Tools

Monitoring focuses on the testing of a condition,
and warning if that condition is not satisfied. One
method of obtaining monitoring tools, is to subvert
the function of a tool whose primary purpose is not
monitoring.

Availability monitoring tools
ping – Ping is a basic function to test network
connectivity

fping – Ping’s big brother, fping will send ICMP
connectivity checks to any number of hosts
(specified on the command line or via an input
file). It checks the hosts asynchronously with
timeouts, meaning that it can be used in scripts
very easily, and is generally a better choice than
ping.

Snips (formerly known as nocol) – Snips is one
of the ‘uber-monitors’. It comes with a variety of
testing tools to check against specific services. It
has the ability to notify on alerts. It also has a
simple control interface with four levels of alerting
based on how often a check fails, with the alerts
being configurable based on the levels. Snips
contains built in monitors for:
ICMP ping
RPC portmapper
OSI ping
Ethernet load
TCP ports
Name server
Radius server
Syslog messages
Mailq
NTP
UPS (APC) battery
Unix host performance
BGP peers
SNMP variables
Data throughput

Nagios – Formerly known as netsaint, nagios is
similar to snips in concept, but with additional
features. Nagios has a very flexible alerting and
notifications system, a nice GUI interface, and
tactical display. It has a complete set of small
binaries for standard service checks. Nagios has
standard plugin check binaries for:
Dig disk space dns fping game hpjd http https ide-
smart imap ldap load mrtg mrtgtraf mysql nagios
nntp nt nwstat overcr pgsql ping pop procs radius
real smtp snmp ssh swap tcp time udp ups users

vsz

There are also sample perl script checks for:
breeze disk_smb flexlm ifoperstatus ifstatus ircd
log netdns ntp oracle rpc sensors wave

Tkined – tkined is a TK application based on
Scotty. It can be useful interactively for
discovering networks, and live monitoring, but
requires extensive customization to work in the
background.

Lynx – Lynx is a simple text based web client.
lynx-dump can grab raw documents in text for you
to parse with additional code.

Wget – wget is a tool for grabbing both http and
ftp files from servers.

ftp – The native NetBSD ftp client can be placed in
non-interactive scripts to retrieve a particular
dataset. The exit status of the command can be
checked (0 means everything was successful).

Bigbrother – Bigbrother is another ‘uber-monitor’
similar to nagios. It’s been around longer and has a
far wider range of user-contributed plug-ins for
monitoring lots of different services.

Bigsister – Bigsister is a clone of big brother
developed to add different features, and also to
improve performance by avoiding shell scripts.

Perl scripts using Net:: modules – With some
creativity a perl script can be written to check for
almost any network service. There are some
limitations when testing crypto-based services.

Built-in software testing tools for a given device
– For example on a Solaris system, A1000 raid
array supporting software has a tool called
‘healthck’ which can be used to test for problems
with the raid array. Other devices and packages
will have tools that may be used similarly.

4. Monitoring for performance

4.1 Definition

Performance is harder to fully monitor as you may not
have control over all machines involved in the
transaction, or the network. To the user, acceptable
performance generally means 'after I perform a
specified action, the response occurs in a reasonable

amount of time. For example, just because a web
server’s http process is showing up in process stats,
this doesn’t indicate anything about the fact that
the server is taking 2 minutes to respond to each
query. Another example, is email delivery. Just
because sendmail is up and running, this doesn’t
give the administrator any idea if mail is getting
processed, or whether time critical emails are
getting delivered in time. Although the coverage
from the system performing the actions to the
server sitting in your data center may not be
completely your responsibility, you can confirm
that your responsibilities are functioning to their
maximum performance.

4.2 Strategies

Along with ensuring the availability of a service,
system, or network, there may be extended
information you can or should gather about the
performance of that availability. The information
you should know or gather before setting up each
individual monitor is the knowledge of the baseline
performance i.e. normal operation of system or
service. Also spend time predicting the failure
modes and methods of degradation in performance
for the object you are monitoring.

With this information, figure out the performance
counters to monitor, and at what thresholds to
alarm. You can choose to never alarm, and you will
still have a body of historical information to
analyze later.

At a minimum, any system providing a service
should have the underlying system performance
monitored; CPU load, disk space, I/O of all kinds.
These basics will allow you to monitor system
changes, which will provide data towards
upgrading system resources, or the system itself as
needed. Forewarned, you can kill out of control
processes before they cause degraded performance.
If you don’t want to monitor these basic metrics,
regularly take a few performance baselines so that
in a crisis you have a record of what the system
should look like. Individual services may also
have metrics that you can monitor such as response
time, resources used, etc.

System performance (and to a large extent service
performance), cannot always easily be monitored
across the network. SNMP is one popular solution,
but it has drawbacks :

o Generally requires a complex daemon to run on a
port.

 o Susceptibleness to security issues2.
 o Overcomplication due to attempting to satisfy for all
eventualities.
 o The simple in SNMP (Simple Network Management
Protocol) is not in reference to the configuration.

SNMP is probably the best choice for monitoring
systems such as network switches and routers that do
not have a feature rich operating system that you can
access. SNMP is not the best choice for servers.
Instead, use available local system tools, and either
write a tight piece of code to send specific information
back to the centralized monitoring host periodically or
on demand, or avail yourself of a tool that performs this
function.

Depending on the OS of the machine you are
monitoring, different tools with varying ease of
installation, and use will be available to you.

4.3 Tools

Sampling of tools for performance purposes
ps – With ps you can display process status on a
host, and other useful information depending on
the options available on your OS, such as cpu time,
memory used by a process, owner of the process,
etc.
df – df is helpful in determining filesystem usage.
uptime - system uptime and runq load
iostat – iostat reports information about I/O load.
vmstat - vmstat reports information about virtual
memory. One of the best sources for determining
what ails your server, cpu problems, excessive
swapping, etc.
netstat – netstat provides you with various
information about network stats. netstat –a
provides information about all sockets. netstat –rn
provides information about routing tables.
mrtg – mrtg is a simple tool for monitoring and
graphing traffic load on network links
rrdtool – rrdtool is mrtg++, a round robin database
tool developed based upon MRTGs graphing and
logging features. Will display any time series. If
you need to view data samples over time, this is the
way to store it for analysis.

2 In the widely implemented SNMPv1, administrative
relationships known as communities, are defined for
SNMP entities. As long as you know the name of this
community, you can access that particular SNMP
community. This community name is used as a pseudo
password to gain access to an SNMP device. To
compound the problem, with every SNMP packet, the
pseudo password is passed in clear text.

cricket – cricket is a rrdtool frontend focused on
SNMP stats gathering for monitoring network
hardware.
flowscan – flowscan is another rrdtool frontend
using cflowd to gather Cisco flow data.
smokeping – smokeping is another rrdtool
frontend that presents network latency in an MRTG
style graph.
perl - Naturally, you can write your own tools in
perl using the rich set of Net:: and other modules.
Scripts can be written in shell, but you may also
consider writing the glue scripts in perl too

5. Monitoring for security

5.1 Definition

Beyond monitoring for availability and
performance, you should monitor for security
reasons. The material necessary to describe
monitoring for security would provide the source
for an entire paper by itself. If security was not
included, our monitoring solution would not be
complete. By venturing into the shallows of
monitoring security, hopefully you will have some
direction as to what depths you wish to further
navigate.

When we monitor for security, we monitor for
three things; Confidentiality, Integrity and
Availability. The classic definitions are : [Ref :
CISSP Definitions]

Confidentiality
 Prevent the intentional or unintentional
unauthorized disclosure of a message's contents.

Integrity
 Prevent modifications to data by unauthorized
personnel or processes, unauthorized modifications
to data by authorized personnel or processes, and
that the data is internally and externally consistent.

Availability
 Ensure reliable and timely access to data or
computing resources by the appropriate personnel.

For example, databases containing sensitive data
like personnel salaries should be kept confidential,
with maintained integrity, while still being
available to those persons and processes that are
required to create biweekly paychecks.

The depth of your security monitoring depends on the
resources you have available to do the analysis.
Quantitative security analysis involving estimates of
yearly loss per vulnerability takes a long time and is
costly. Qualitative analysis (per situation) is easier to
perform.3

5.2 Strategies

As in the strategies with monitoring performance,
determine the baseline of the system. Figure out what
the operation norms are. In some respects security is
easier since it is more rigid. If we need to ensure that
certain files do not change, then we use a tripwire/md5
type solution and compare to our prepared table of
hashes.

Some systems come with a predefined set of daily
security tests (/etc/security.conf on *BSD systems), the
output from these tests can be parsed and a flag raised if
need be.

System logs can be analyzed, and patterns alerted on.

Places where changes are made to critical points in your
security infrastructure (external access points, LDAP
servers, NIS servers, Windows PDC) should be
monitored closely as they affect your entire
infrastructure if security fails.

Security requires a greater understanding to implement
fully. Generally vendors will not share your security
model, some unable to grasp that you would care about
security at all which results in writing glue code to
accomplish your security needs.

5.3 Tools

Sampling of tools for security purposes
nmap – nmap is a ubiquitous tool for scanning
networks to see what ports are listening. It is very
useful as an early stage in network mapping
exercises, and can be used in a script to check for
changes to the baseline. (e.g. if a new port
suddenly starts listening, you can be notified)

nessus – A security audit tool, nessus performs a
range of vulnerability tests against a host via the
network.

md5 - MD5 is a hashing tool, producing a small

3 Security Risk Analysis
http://www.security-risk-analysis.com/introduction.htm

digital fingerprint for any given file. By storing a
list of hashes for critical files, you can see when a
file has changed unexpectedly.

swatch - 'Simple log watcher', swatch watches
syslog files, scans for patterns, and then runs an
alert shell script when a match occurs.

/etc/security - *BSD security check shellscript
with output that can be parsed and flagged.

portsentry – portsentry binds to a specified set of
ports on a host, waits for connection attempts to
those ports, and then performs a set of actions (e.g.
drop the IP via a null host route, log the connection
attempt to syslog which can then be picked up
and acted upon by swatch).

logsentry – Similar to swatch, logsentry has more
features and understands common log patterns by
default. It is also quicker to deploy.

snort – Snort is a packet signature analyzer. It
watches packets arriving at a host (or network port
if used as a perimeter sniffer), compares those
packets to a list of signatures, profiles potential
attacks and reports on them.

tcpwrappers – tcpwrappers will monitor
connections to daemons (typically started from
inetd.conf) and log to syslog. Swatch may be used
to alert.

ipfilter/ipchains/ipfw - At a very low level,
packets that match specific rules can be logged
and/or counted using one of these tools. Counts
can usually be displayed with an 'ipfstat' type tool,
logs
with an 'ipmon' type tool.

perl - Perl can be the glue code to hold the various
other tools together, or to create a new specialised
tool.

6. Monitoring setup and configuration

6.1 Centralized monitoring host

Previously, we have mentioned the centralized
monitoring host when discussing the tools
available for monitoring without explaining what a
centralized monitoring host is. The centralized
monitoring host , which we will name central, is
the system that ties together all of the individual

monitoring tools. It should provide the following
features :

 o Use stable, predictable code. This machine will be
left unattended for weeks or even months at a time. You
need to be sure that it will still be working as expected
when you return
 o Implement redundancy features with failover.
 o Have configurable alerting of individuals and groups
based on different criteria. (time-based, threshold-
based)
 o Have a variety of standard testing tools for standard
services
 o Accept input in a standard form from third party
software/tools
 o Be intelligent about alerting, having the ability to
distinguish between a host/service outage, and a
network outage.
 o Be well written and try to conform to the Unix
philosophy of 'small tools to do simple tasks very well'
 o Store historical logging of check data for future
analysis

In addition, the following features although not required
would be optimal:

 o Be easy to configure, or have tools to assist in
configuration
 o Have a nice web display for the command-line
challenged (GUIs have their place, this may be one of
them)
 o Have a nice configurable web display for the
company officials to see graphically how the money
spent on this monitoring solution is actually saving
money.
 o A historical reporting function

6.2 The ‘uber-monitor’

Quite a few 'uber-monitor' tools have been written,
although they are not all currently maintained, or
updated. Each has strengths and weaknesses that may
determine whether you use one or the other of them in
your operating environment. The focus of this paper
will be on nagios, as we find it to be the most feature
full on average for our needs. Nagios has drawbacks in
that it is not very easy to configure, but that problem is
actively being worked upon. It is sufficiently
lightweight to flex into different designs, yet having a
feature set that makes it an asset at the same time.

The principles described should translate to other
software tools as well. Determination of tools is a
matter of personal choice as stated at the beginning of
the paper.

 Some alternatives to look at include :
(as mentioned on the Nagios website at
http://nagios.sourceforge.net/docs/1_0/about.html#
othermonitors)

 Angel Network Monitor
 Autostatus
 Big Brother
 HiWAyS
 MARS
 Mon
 Netup (French)
 NocMonitor
 NodeWatch
 Penemo
 PIKT
 RITW
 Scotty/TKined
 Spong
 Sysmon

6.3.0 An Overview of Nagios

Nagios is primarily a notification tool. By itself it
does not do any actual monitoring. Nagios comes
with a suite of plugin binaries and scripts to do the
monitoring. This means that nagios can focus on
the specific task of notification.

Nagios uses basic-auth mechanisms to determine
who is allowed to access a given feature. It has
several levels of access control within the
application, allowing you to define who can view
certain info, or modify certain info, as well as other
controls. By default owners can only view the
service/host checks that they would normally be
notified about.

Nagios requires a web server to be installed if you
want to run and administer it via the web interface.
We favor apache, although any web server that
allows CGI should work fine.

Because the basic auth involves sending passwords
via the web, it is recommended that you use SSL
(https) for the web server and not plain http.

6.3.1 Installation of nagios

Nagios is not yet in pkgsrc. Once this happens the
installation becomes considerably less involved.

Install nagios.
1. Create a nagios user and group (both named
'nagios')

2. Install gmake from pkgsrc

cd /usr/pkgsrc/devel/gmake
make install

3. Download nagios.
http://www.nagios.org/download/

4. Unpack the download file

gzcat nagios-1.0b6.tar.gz | tar vfx -

5. Configure and make nagios

cd nagios-1.0b6
./configure
gmake all
gmake install * installs into /usr/local/nagios
gmake install-init * installs init script into
/etc/rc.d
gmake install-commandmode * installs and sets
permissions on external commands file
gmake install-config *installs *SAMPLE*
config files into /usr/local/nagios/etc

6. Download nagios plugins.
http://www.nagios.org/download/

7. Unpack the download file.

gzcat nagiosplug-1.3-beta1.tar.gz | tar vfx -

8. Configure and make the plugins.

cd nagiosplug-1.3-beta1
./configure
gmake
gmake install *installs plugins into
/usr/local/nagios/libexec

9. Configure your web server as per the nagios
documentation. This will vary depending on your
existing web server installation. Make sure you
have an SSL enabled web server. Mod_ssl works
great with Apache, is easy to set up, and has a
utility for creating your own certificates.

6.3.2 Editing the Nagios configuration files

You can put all of your nagios configurations into one
big file. In practice it is easier to separate different
configuration groups into separate files. The main
nagios.conf file contains include statements to inherit

the other files. This file is the one you specify
from the command line when starting nagios.

Although nagios comes with a set of well
commented sample files, configuration files are
still somewhat bewildering to anyone who has not
used the software before. The most common basic
actions are shown in the examples below.
Following these examples through should give you
a minimal working nagios installation monitoring
one service on one host.

Set up nagios.cfg (using csh syntax).

1. Make copies of the sample files.

cd /usr/local/nagios/etc
foreach i (*-sample)
cp $i ${i:r}.cfg
end

2. You do not need to change most of the settings,
but you should probably set the values of
admin_email and admin_pager in nagios.cfg.

Add a host check.

1. Edit hosts.cfg, by removing everything
below the 'generic host template'

2. Add a host check for the host 'foo' by
inserting these lines at the end of the file:

define host{
 use generic-host ; Name of host
template to use

 host_name foo
 alias foo server
 address w.x.y.z
 check_command check-host-alive
 max_check_attempts 10
 notification_interval 120
 notification_period 24x7
 notification_options d,u,r
 }

(NOTE - w.x.y.z is the machines actual IP address,
substitue accordingly)

Replace foo with a name of one of your
mailservers that runs SMTP.

3. Save the file.

 Add a service check.

1. To monitor sendmail/smtp daemon on
“foo”, edit services.cfg, delete every entry
except the one that looks like :

Service definition
define service{
 use generic-service ; Name
of service template to use
 host_name novell1
 service_description SMTP
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 3
 retry_check_interval 1
 contact_groups novell-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_smtp
 }

Replace host_name novell1 with host_name foo

Notice the two lines contact_groups and
check_command, we'll deal with more with those
in the next examples.

Configure contacts

If you want nagios to contact you, you need to tell
it whom to contact. Let's configure a contact group
and the contacts in that group.

1. Edit contacts.cfg.
2. Change the nagios admin definition to

have the right email and pager addresses
for the person or group that maintains the
nagios host.

3. Replace the 'John Doe' example with a

real person (probably yourself if you're
just starting out).

4. Add any additional contacts in as new

records similar to the John Doe example.

5. Save that, and edit contactgroups.cfg

6. Remove every record, except for the
'novell-admins' record (since that is the
name listed in our previous service
definition, you could of course change it
to something else as long as they both

match).

7. In the members field, add all of your
contacts that you want to be notified for
outages of this service, comma separated
list.

Configure hostgroups

Hostgroups are a way of grouping functionally
similar hosts into groups, for example DNS
servers,
mail servers, etc.

1. Edit hostsgroups.cfg

2. Replace the record that reads :

'novell-servers' host group definition
define hostgroup{
 hostgroup_name novell-servers
 alias Novell Servers
 contact_groups novell-admins
 members novell1,novell2
 }

With :

'mailserver' host group definition
define hostgroup{
 hostgroup_name mailservers
 alias Mail Servers
 contact_groups novell-admins
 members foo
 }

Edit dependencies

Dependencies are an advanced feature of nagios
that allow you to define services and/or hosts as
being dependent on other services and/or hosts.
This reduces the noise when a given service fails,
since monitoring and notifications on the
dependent services can be silenced automatically.

At this stage, we will not use this, but the example
file comes with some dependencies defined.

1. Edit dependencies.cfg, and comment out
every entry by making sure that every line
starts with a #.

Edit Escalations

This is another advanced feature that we do not
wish to define yet. Basically this is the feature that
makes managers very happy, allowing very precise
definitions of escalation coverage, at what point
different groups get notified about a failure etc...
embedding service level agreements in the
monitoring.

For now, we shall comment this out as we did with
dependencies.

At this point, we can check nagios operation by
running /etc/rc.d/nagios reload. You
should see something like :

gilgamesh# /etc/rc.d/nagios reload
Running configuration check...done
Starting network monitor: nagios
 PID TT STAT TIME COMMAND
20095 ?? Ss 0:00.02
/usr/local/nagios/bin/nagios -d
/usr/local/nagios/etc/nag
gilgamesh#

You can check that things are operating normally
without going to the web, simply by looking directly in
the status file in /usr/local/nagios/var/status.log (or
wherever you have installed in nagios).

Configuring Nagios Remote Plugin Executor

Earlier an alternative to SNMP for monitoring system
counters via the network was mentioned. Nrpe is the
tool for doing that. The nrpe has two components. One
is a small daemon that sits on the monitored host, one is
an active client check that runs from central. The
daemon has a config file which defines basic IP based
access control (which host can get to the daemon and
ask it for information, typically only central is defined,
perhaps one other IP for redundancy), and then you
define a list of strings that you associate with a system
command.

Download nrpe.
 http://www.nagios.org/download

The build process is in two parts, first compile the
check_nrpe client on central.

Download, untar and compile the source on central

./configure
make all
cd src

Configure nagios commands.cfg to know about
check_nrpe

Add the following into commands.cfg :

define command {
 command_name check_remote
 command_line $USER1$/check_nrpe
$ARG1$ -c $ARG2$
}

$ARG1$ will be the hostname argument in
services.cfg, $ARG2$ will be the name of the
check passed to the nrpe daemon on the monitored
host.

Compile the nrpe daemon on the remote host (may
be a different OS), or copy the compile from
central if it's the same OS. I find it easiest to install
into /usr/local/nagios on the remote host as well.

/usr/local/nagios/bin/nrpe
/usr/local/nagios/etc/nrpe.cfg
/usr/local/nagios/libexec/check_foo (the plugins
you need to use to run the check, either home
written in perl/sh, or compiled from nagios
plugins)

Define an nrpe.cfg on the remote host, containing
the checks you want to execute.

IP address of the monitoring host (hideout)
allowed_hosts=w.x.y.z

list of commands that may be executed locally

command[woprdisk]=cd /net/wopr; cd /;
/usr/local/nagios/libexec/check_disk -w 2%
 -c 1% -p /net/wopr

(in this case we're using an NFS mount to check
how full a NetAPP filesystem has become, it will
report a warning at 98% full, and a critical at 99%
full. These values were chosen based on the total
size of filesystem (> 1TB), typically you would
warn earlier on smaller filesystems.)

So say we put an entry like :
command[rootdisk]=/usr/local/nagios/libexec/chec
k_disk -w 10% -c 5% -p /

Startup nrpe on the monitored host, either from
inetd, or via an rc script.

Going back to central, define a service check thus
in services.cfg :

define service {
 host_name foo
 service_description foo root disk usage
 check_command
check_remote!foo!rootdisk
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 3
 retry_check_interval 1
 contact_groups novell-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 }

Restart nagios with /etc/rc.d/nagios reload. Now
NRPE will check root disk status on foo
periodically.

6.3.3 Additional Nagios tools

Nagios Administration Tool (NAGAT) - A web
based solution written in PHP for configuring
nagios host,service checks etc..

Nagios Service Check Acceptor (NSCA) 2.1 - A
two part client/server tool (similar to NRPE) used
in the other direction, allowing remote clients to
submit asynchronous events (such as security
alerts) to a daemon listening on central. The
daemon then pushes those events into nagios as a
PASSIVE check.

nagios_statd - Perl/Python plugin that lets you
check remote host information such as load, users,
filesystems etc.

NTray 0.91 - Handy NT app that sits in your
system tray and retrieves info from the nagios
status file and gives red green lights for you to
watch.

Remote Execution Layer (REL)- A layer for
providing alternate transport between client and
server for NRPE and NCSA. This gets around
modifying firewalls to work with nagios. Currently
it sends results via email into nagios.

remote_ctl - Perl CGI for easily enabling/disabling
service checks remotely using wget or a web
browser.

6.3.4 Nagios gotchas

Process space

Nagios can fire off enough checks at one time on
the central host that it runs into per-user process
limits. Always increase the process limit for the
nagios users as you increase your use of the
application.

Always do restart

When modifying nagios config files, always use
RCS as a matter of course, but never stop and start
the daemon, always use /etc/rc.d/nagios restart. The
reason for this is the restart option will cause a
configtest
against the files before any action is taken. This
means that even if you have caused an error in your
config files, the running daemon will not go away,
and you will get the chance to fix your config files
at your leisure without interrupting service.

Use dependencies and parents

Parents are how nagios attempts to model the
network and distinguish between network and
host/service outages. For every host you define,
you should define a parent as the first hop on a
traceroute from that host to central. This way, if a
network fails and you can't get to a critical server
subnet from central, you won't get a number of
pages about the hosts, since nagios will know that
it's a network outage.

Similarly for dependencies, dependencies actually
allow you to monitor more complex systems and
reduce the number of 'noise' notifications you get
when a failure occurs.

6.4 Monitoring the monitor.

 Quis custodiet ipsos custodes - The watched shall
watch the watchers

If central fails for whatever reason, you have lost
the ability to monitor everything. Unless you are
also monitoring central itself, you will never know
this as a failure in your monitoring solution as the
failure mode is no alerts which is the same as if
everything is running smoothly.

A second box should be setup (monitored by
central, naturally) whose purpose is to monitor
central. It needs to have at least the ability to

inform someone if/when central fails. It should
probably complain very loudly when this occurs. Pager
notifications to everyone are appropriate in this
situation.

Generally the two boxes will not fail at exactly the
same time, so you will get some sort of notification
about a failure.

6.5 Notifications

You will need two methods of sending notifications.
The general day to day method is alerts via emails to
email accounts, or pager/sms gateways. The second
method should be 'out of band'. Out of band means a
method that is not in
any way subject to the same set of failure modes as the
original method. If your email server fails, you want to
be able to get notifications, but if you rely solely on
email to receive your alerts, you will never receive the
alert.

Now, you can of course take this requirement to
extremes, but generally speaking, it's acceptable to have
a separately powered machine, connected
via a phone line that doesn't go through your main
company exchange. This machine will be used to send
notifications (to a pager usually), via a dialup
connection to the pager provider, or to an ISP
somewhere.

Again the key here is not to be totally redundant, but to
have enough redundancy to be able to see the problems
as they occur and be able to react in a timely manner.

7. Monitoring Overlap

As you can see, there is a lot of overlap between the
different monitoring categories. Separation of
categories is provided to make it easier to understand
the different components required in monitoring your
environment.

By designing your monitoring tests to complement one
another it's possible to make early informed judgments
about where problems lie. Try to emulate the sort of
questions you would ask in debugging a problem. By
understanding what a series of failures occurring at the
same time really means, you can jump straight to the
underlying problem and fix it more quickly.

8. The physical world
The worst failures often arise outside of the
computer hardware or software. Failure of power,
UPS, or air conditioning can be catastrophic. A/C
failure can go unnoticed for several hours on a
weekend, driving up data center temperatures into
triple digits creating lumps of metals out of your
expensive critical machines.

It is a simple matter to build (or buy) temperature
probes which can then report back to the central
host. Place several of these around your data center
and you then have a handy temperature monitoring
system. Graph it with rrdtool over time and you
can see if there is a gradual increase and if you
have to respecify the A/C coverage. You may also
be able to take advantage of the built-in
temperature probes in (for example) some Cisco
hardware. See references for websites that either
sell or have plans for this.

Good quality UPS systems will often have a serial
connection which changes state when the UPS
operates. This can be monitored, or have an action
associated with it (for example, shutting down
critical servers gracefully in the time left with
power, to save data).

Electronic entry systems generally come with their
own software, but if you choose to roll this into
your monitoring system it can be done with a little
creativity. For example, if you really need to be
notified whenever someone enters a particular
location for example, or between certain hours.
Your imagination is the key.

9.0 Implementation

9.1Case Study I

Divisional monitoring

This system was setup to augment existing
monitoring systems in the division, various scripts
using OS native tools like ping, and df. It was
originally intended as an interesting experiment
and cool hobby for the designer, something to play
and learn with. Although more of a personal
monitoring tool than a production monitoring
solution, it did get used by other members of the
team. It monitored Irix, and Solaris systems as well
as Fore systems network equipment.

Hardware

Single old Pentium 133Mhz box (lethe), running
NetBSD1.3, installed with nocol from pkgsrc.

Machine was located on the same subnet and network
media as most of the services it was to monitor. Single
network interface (10bT).

Relatively new to NetBSD at the time, I found it a
much better operating system to work with, than the
other operating systems in use at the organization. Irix
was going through a period of flux in its OS
development, 32bit versus 64bit, n32 versus o32.
Compiling was a nightmare sometimes, especially with
Open Source software. Solaris was clunky. Nocol was
chosen, as it best met needs at the time from the
packages that were researched online, and from pkgsrc.

Implementation

It took a few weeks to configure, as this was a first
attempt at this sort of service. Approximately 40
Unix servers were monitored with ‘rpcpingmon', and 15
managed switches and routers were monitered with
ippingmon. Critical servers’ performance statistics were
monitored more closely with 'hostmon'. Some
experimentation with syslogmon occured, but at the
time, a separate system using swatch by itself was in
use.

Notifications were via email and pager, and also via a
console ('netconsole') running on the network
administrator's workstation.

After setup, I examined the system every time new
systems were installed into the environment. I also
reevaluated the configuration every few months to fine
tune the system.

The system scaled reasonably well, although some
slowdown was noted on lethe as more checks were
added. There was no provision in the system to
understand network outages, and no redundant
notification paths. Given the environment this was
acceptable however, since most of the admins were
frequently online and watching stuff anyway.

9.2 Case Study II

Enterprise wide monitoring setup

This system was setup from scratch in a place with no
monitoring. It was intended to completely monitor all
critical services within the enterprise. At this time it is
still evolving

Hardware
Three desktop PCs (Pentium II-400, 128MB RAM,
4 or 9GB hard drives), each with a vanilla NetBSD
installation (1.5.x).

PC1 (hideout) - The main nagios host, some
sample configuration files shown in Appendix B.

PC2 (pageboy) - The phone dialer. Disconnected
completely from the network for security reasons
(the dialing process will bring up an IP stack), and
connected via serial cables to PC1 and PC3.
Communications via UUCP. This is the host that
will send out pages via an external service. The
connected analogue phone line doesn't go through
the main building phone switch.

PC3 (hwatch) - Hideout's watcher. This is the
second monitor host whose only purpose is to
monitor PC1 and scream if it goes down. Always
sends pages via pageboy. Arguably this function
could be rolled into pageboy.

With many years of NetBSD experience now,
NetBSD was the obvious choice because it’s great
and has never failed at any of the tasks I’ve
attempted with it. I’m very comfortable with the
OS. Nagios was chosen, as it seems to be the best
of the monitoring packages available currently.
that.

Implementation

Setting up the initial install of nagios took an
afternoon. The longest part of configuring nagios,
was gathering information from other groups to
make it useful to them. The basic system
monitoring was up within hours, and configured
more completely in about 3 weeks. The first couple
of days, I configured nagios to monitor the
infrastructure (DNS, mail, NIS, LDAP, etc..), the
rest of the time was adding in hosts that others
needed, using nrpe to gather system specific
statistics.

The system currently monitors 72 hosts and 126
services. No noticeable performance impact has
been seen on hideout, notifications (based on time
tuning) are generally immediate, and problems are
noted and worked upon before anyone in the user
community sees them

Since setup, I regularly check the system weekly to
make changes. It is gradually getting into people’s
awareness as something to consider as part of a
deployment of new services.

I've written specialized nagios plugin client code, to
check our high uptime web content.

It has assisted our organization by allowing us to
respond to failures before they become catastrophic, or
impacting business profits. Our group has a better
reputation, with more personnel having faith in the IT
department’s ability to prevent and handle emergencies.

Setting up a similar system

Generally there are very few limitations unless you're
really deploying the system worldwide, at which point
your better option is to scale hierarchically and have
slave nodes reporting back to a master reporting station.
Current desktops have more than enough resources in
every area to perform as a central monitoring host. The
current enterprise setup is not suffering under its current
load. Figuring out the ideal system really depends on
how far you want to scale.

If you need to buy a system, a mid range rack mount or
desktop will be fine. A laptop will work in a pinch.
High disk I/O isn't absolutely necessary (although it
might make response time better when you need to
maintain the system).

My ideal setup would probably be an older model
athlon on a stable chipset board with 512MB ram and
18GB mirrored disk. That would be ample for a
standalone station.

If you are at the point of needing slave nodes, then use
a similar setup, using a current model athlon, bigger
disks with hardware raid, and gigE connections for the
master node.

Future work

When the world of the dot-coms has money once again
it will be nice to build a monitoring solution with more
powerful machines, along with the usual hardware
redundancy features. In choosing the hardware (they are

currently compaq PCs...) we will be more easily
able to raidframe disk mirroring etc...

Conclusions

We defined monitoring as a sampling of some sort
of content, systematically tracking the state of that
content, and warning the appropriate parties when
needed. By investing time and resources on
preparing a monitoring solution at the outset of
enterprise architecture, catastrophe will be adverted
when AC in your data center fails, the company’s
website becomes unreachable or a distraught
recently fired HR employee attempts to trash the
systems. A monitoring solution does not replace
the need for redundancy in your systems, or having
reliable backups. As system environments become
more complex, monitoring becomes more
important. With the lag in resources for increasing
manpower versus the need for more systems to
handle load, a good monitoring solution is the only
way to keep on top of system performance.
Running NetBSD, one of the most stable and
secure operating systems available, with the very
configurable nagios, you will have built a
monitoring solution that will withstand most
system and network administrator’s nightmares.
Instead of Mr. Smiley calling you up questioning
the cost benefits of your setup, and monetary losses
of downtime, you will be prepared with
information to backup decisions on buying
system/network resources, and be prepared when
emergency strikes to minimize downtime.

The intent of this paper was to impart design skills
to help you enhance your own monitoring
solutions, and get you started with a basic
monitoring framework if monitoring is a new topic
for you. The authors are happy to field questions
via email, and contract work is always welcome.

References

Online copies of this paper, sample perl tools source code and sample Nagios configuration files may be obtained
from http://www.deorth.org/papers/monitoring

Mr Smiley http://www.userfriendly.org

Obtaining pkgsrc http://www.netbsd.org/Documentation/software/packages.html

Fping
cd /usr/pkgsrc/net/fping && make install.
Or, sources can be obtained from

ftp://ftp.uu.net/usenet/comp.sources.unix/volume26/fping/

SNIPS http://www.netplex-tech.com/software/snips/
Nagios and associated plugins and contributions http://www.nagios.org
TKined (and in kpgsrc) http://wwwhome.cs.utwente.nl/~schoenw/scotty/
Lynx (and in kpgsrc) http://lynx.browser.org/
Wget (and in pkgsrc) http://www.gnu.org/software/wget/wget.html
Big brother http://www.bb4.com
Big sister http://bigsister.graeff.com/
MRTG (and in kpgsrc) http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool
Cricket http://cricket.sourceforge.net/
Flowscan http://net.doit.wisc.edu/~plonka/FlowScan/
Smokeping http://people.ee.ethz.ch/~oetiker/webtools/smokeping/
Other front ends to rrdtool http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/rrdworld/
Nmap http://www.nmap.org/nmap/index.html
Nessus http://www.nessus.org
MD5 Part of the NetBSD base OS, src for compiling on other operating systems is available from

ftp://ftp.cert.dfn.de/pub/tools/crypt/md5/01-README
Swatch http://oit.ucsb.edu/~eta/swatch/
Portsentry http://www.psionic.com/abacus/portsentry/
Logsentry http://www.psionic.com/products/logsentry.html
Snort http://www.snort.org/
TCPwrappers ftp://ftp.porcupine.org/pub/security/index.html

Acknowledgements

We’d like to thank the BSDCon committee for giving us the opportunity to share our thoughts with the BSD
community.

Alan would specifically like to thank his places of employment Inktomi and Dreamworks for providing the work
environment to experiment and explore innovative ways of providing better system performance through
monitoring. Also, he would like to thank David Brownlee for introducing him to the one OS, NetBSD, and the
many people in the NetBSD community who have always been helpful and instructive through the years.

