Advanced Virtual Private Network
Support on FreeBSD systems

Riccardo Scandariato, Fulvio RiIsso
Politecnico di Torino, Italy

2" European BSD Conference, Amsterdam, 15-17 November 2002

Outline

PPVPN definition

Needed support for PPVPN
Roadmap of modifications
Implementation details (FreeBSD 4.4)
Conclusions

Customer-based VPN

mobile employee -

|

— = =S

enterprise HQ

= VPN connectivity supported by customer
equipment

= Network provider just as transport (VPN-
unaware)

Provider Provisioned VPN

= VPN connectivity supported by the provider
network

* Transparency to the end-user

= Multiple virtual network concurrently
deployed on the same physical network

* Routers shared among different VPNs

= Addresses are chosen by clients (typically
out from the private space)

* Overlaps and collisions across VPNs

Access VPN router

|dentification Encapsulation
Vx lookup

—(JIf0 0N eth?2

eth0 (Pri) %ﬁ eth2 (Inet)
Inet SRC Inet DST VPN SRC VPN DST

freebsd(eth2) goomer(eth0) || 10.0.1.1 10.0.2.7 | payload

Core VPN router

gif0O on ethO

=

freebsd

mago

gifl on ethl

R

tunnel switch

Inet SRC Inet DST VPN SRC VPN DST
freebsd(eth2) goomer(ethO) 10.0.1.1 10.0.2.7 | payload

Inet SRC Inet DST VPN SRC VPN DST
goomer(ethl) mago 10.0.1.1 10.0.2.7 | payload

Tunneling

P-in-IP already provided by FreeBSD (qgi f
nseudo-interfaces)

Paired Point-to-Point numbered links
e freebsd# i1fcongig gifO create

e freebsd# ifconfig gifo
lnet 10.0.0.1 10.0.0.2
net mask 255. 255. 255. 0

e freebsd# gifconfig gifO
l net 130.192.31.1 130.192.31.2

e Same on peer

Summing up

= Many nets with their own topologies
= Same routers serving many nets
= No assumption about address spaces

* Cope with overlapped address spaces

= Each packet must be forwarded according
to the pertaining VPN

Rationale

= Routing table virtualization

* Introduced by this work
* Forwarding virtualization

* Routing virtualization
= Tunneling (IP-In-IP)

* Already provided by FreeBSD (see issues...)
= Commitment

* As few modifications as possible

* Harmonize with existing code
* The simpler the better!

10

Modified files

sys/ sys/ socket . h

sys/ sys/ socket var. h
sys/ sys/ socki 0. h

sys/ kern/ ui pc_socket.c
sys/ kern/ sys _socket. c
sys/net/if _var.h
sys/net/if.h
sys/net/if.c

sys/ net/route.h

sys/ net/route.c

sys/ net/raw cb. h

sys/ net/rtsock.c
sys/net/raw usrreqg.c
sys/netinet/ip_input.c
sys/netinet/if_ether.c

nhetstat/ netstat. h
nhetstat/route.c
netstat/ main.c

rout e/ keywor ds
route/route.c

| fconfig/ifconfig.c

zebral/lib/vpn.h
zebra/ main.c

zebral/ kernel socket.c
zebra/rtread sysctl.c

11

Roadmap

zebr a
rout e

socket (RAW
Il octl ()
set sockopt ()

sysctl ()

socket (DGRAM
Il octl ()
struct ifreq

aoeds J1asn

N

Forwarding

aords |au.Id)

12

Multiple routing tables

rt _tabl es[]

0

AF | NET

Patricia's tree

AF_ MAX+1

Multiple routing tables cont'd

= vpn rt _tabl es] VPN MAX + 1]
e VPN MAX defined in sys/socket.h

= Array statically allocated (net/route.c) for
efficiency

= Tables dynamically initialized on demand
the first time they are accessed
e rout e out put (RTM ADD) =>
e Vvpn_rtrequest (RTM ADD, vpni d) =>
ern_inithead(&pn rt _tabl es[vpnid])

14

Routing messages

(/H/ struct
Gt e s> o
user space process |

l Routing message < Wﬁ/y{}@st .
— > Socket ¢ /X(Y/yg/%k/ sockaddr
e 1 Loy

buffer

r/\OlJTe_out put ()
GET ADD
CHANGE DELETE

rtal | oc() Qal I och @equest(}v
A A
protocols S e ?

Routing sockets

= VPN ID added to socket structure
(sys/socketvar.h)

e struct socket{ u int vpnid; }

= VPN ID field initialized to zero when socket
IS created by socket () sys call

* socreate() (kern/uipc socket.c)

16

Routing sockets cont'd

= VPN ID can be set through the SO VPNI D
option (sys/socket.h) of set sockopt ()

e sosetopt(), sogetopt ()
(kern/uipc_socket.c)

= \VPN ID can be also set through the
SI OC(G S) VPN D options (sys/sockio.h)

ofi octl ()

e soo _loctl () (kern/sys socket.c)

17

Table interaction

= rout e _out put () (net/rtsock.c)

e RTM ADD and RTM DELETE now call
vpn_rtrequest () (net/route.h,c)

e RTM GET now selects the table based on the
socket's vpnid before r nh_| ookup()

18

Routing messages from kernel

= VPN ID added as argument to
raw_I nput ()

e VvPpn_raw i nput () (net/raw cb. h,
net/raw usrred. C)

= Message is now delivered only to routing
sockets with the same VPN ID

19

Sysctl

= £.9. used by net st at to read the whole
table

e sysctl rtsock() (net/rtsock.c)

= Example

e struct rt_nsghdr *nsg;
Int mb[6] = {CTL_NET, PF_ROUTE,
0, AF | NET,
NET RT DUMP, 7}
sysctl (m b, nsQ);
VPN ID
(added)

20

Packet forwarding process

rtall ocl()

Cgif_input()

I p_i nput () | p_out put ()

| p_forward()

Network
Interface

21

Forwarding virtualization

m | p forward() (netinet/ip_input.c)

* VPN ID is retrieved from the receiving
Interface (either physical or pseudo)

* tnowcallsvpn rtalloc_ign()
(net/route.h,c)

= Ancillary functions

evpn rtalloc(),vpn_rtallocl()
(net/route.h,c)

22

Traffic identification

data packet
-

I

et hO

\
Lgif2

forward

colored interfaces

Interface marking

= VPN ID added to interface structure
(net/if _var.h)

e struct 1fnet{ u.int If_vpnid,

= VPN ID field initialized to zero when
Interfaces are created at boot

e | f _attach() (net/if.c)

}

24

Interface marking cont'd

= VPN ID can be set through the
SIOC(S, G| FVPNI Doptions

(sys/sockio.h) of i oct | ()

e struct ifreg{ u.int ifr_vpnid,
(net/if.h)

e ifioctl() (netif.c)

}

25

User space programs

= rout e add
default freebsd.polito.it
-vpn 7/

m hetstat -v 7

m|fconfig gifO
10. 0. 0.1 net mask 255.255. 255.0
vpnid 7

m zebra -f zebra.mago. 7.conf -V 7
e ospfd -f ospfd. nago. 7. conf

26

Issues (1)

= ARP cache update not virtualized

* ARP lookup is virtualized (netinet/if _ether.c)
e ARP entries still written into base table

* |ssue does not affect if a L3 CPE is used
between the destination and the egress router

27

Issues (i)

= gi f Interfaces are colored to identify the
pertaining VPN

= Different VPNs between the same couple
of nodes need different tunnels/gi f s

= [ncoming gi f Is recognized through outer
src address and outer dst address

* No multiple IP-In-IP tunnels between the same
couple of physical interfaces (addresses)

= GRE (with KEY field) can be used to
disambiguate

28

Improvements

= VPN identification at ingress points
* Fine grained traffic filters
e Colors are better for gi f interfaces
= Zebra support

* VPN_ID in communication protocol between
ospf d daemons and the zebr a router

manager
= Secure transport of VPN traffic: IPSec

= Per-VPN QoS warranties: ALTQ

29

Info

= Do you wanna try it?
* http://softeng.polito.it/freebsd/

= Do you wanna know more details?

* Riccardo Scandariato, scandariato@polito.it
* Fulvio Risso, risso@polito.it

30

Q&A

